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Applicability of time-average moiré techniques for chaotic oscillations

Minvydas Ragulskjs,1 Miguel A. F. Sanjuan,2 and Loreta Saunoriene'
1Departmemf of Mathematical Research in Systems, Kaunas University of Technology, Studentu 50-222, 51638, Kaunas, Lithuania
’Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Mostoles, 28933,
Madrid, Spain
(Received 29 November 2006; revised manuscript received 8 May 2007; published 18 September 2007)

Applicability of time-average moiré techniques for chaotic oscillations is analyzed in this paper. Envelope
function characterizing the rate of convergence of time-averaged color intensity is derived. A study of the
relationship among Lyapunov exponents and gray scale color intensity provides insight into the process of
chaotic contrast modulation and confirms that chaotic oscillations do not produce time-average moiré fringes.
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I. INTRODUCTION

Regular optical patterns can be exploited for characteriza-
tion of spatially and periodically forced nonlinear systems
[1]. Moiré is a classical experimental technique exploiting
optical patterns with many applications [2,3] in different
fields of science and engineering. This technique is based on
the analysis of visual patterns produced by the superposition
of two regular gratings that interfere geometrically. Ex-
amples of such gratings are equispaced parallel lines, con-
centric circles, and radial lines [4—6]. The gratings can be
superposed by double exposure photography, by reflection,
by shadowing, or even by direct contact [7-9]. Moreover,
moiré patterns are used to measure displacements, rotations,
curvature, and strain through the viewed area.

Time-averaging optical techniques possess a definite ad-
vantage over double exposure techniques in the sense that
periodic or even transient dynamical processes can be inves-
tigated directly [10]. Time-average geometric moiré exploits
the grating formed on the surface of an elastic oscillating
structure. Time-averaged fringes are produced when the car-
rier moiré grating is contrast modulated by the function de-
pendent on the type of the object motion. Dynamic displace-
ments can be estimated from the time-averaged fringes,
whereas the fringe order no longer represents the displace-
ment by an integer number of pitches. Moreover, the inten-
sity of the time-averaged moiré pattern is governed by rela-
tionships comprised of a zero order Bessel function of the
first kind [2,3,11,12].

It is well known that nonlinear systems can exhibit peri-
odic, quasiperiodic, and even chaotic responses under peri-
odic forcing [ 13—15]. Therefore, it is important to understand
what time-averaged image would be produced if a moiré
grating is formed on the surface of a chaotically oscillating
elastic structure.

The influence that classical dynamics has on interference
patterns in coherence experiments is discussed in [16]. A
time-integrated probability current is calculated through an
absorbing screen, and furthermore it is shown how interfer-
ence fringes in the probability current generically disappear
in the case of a chaotic system.

The object of this paper is to analyze how the time-
average pattern of fringes generated by optical experimental
techniques can be used to determine the chaotic dynamics of
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certain mechanical structures. The ability to interpret such
time-averaged moiré images would help to improve the un-
certainty of the inverse problem and to distinguish malfunc-
tions of the optical setup and also physical reasons causing
specific optical effects.

II. ILLUSTRATIVE EXAMPLE

Bending vibrations play a crucial role in the functionality
of different micromechanical systems such as cantilevers,
micromirrors, etc. [14]. A typical example is a centrally
clamped rotating circular disk, where bending vibrations can
affect the operation of hard disk drives [18,19]. It is natural
to expect that those vibrations can be quasiperiodic or even
chaotic. We follow a universal approach to the investigation
of the dynamics in generalized models proposed in [20]
when a single generalized model can describe a class of sys-
tems, which share a similar structure.

The construction of digital time-averaged reflection moiré
images for harmonically oscillating structures is presented in
detail in [21]. Finite element computational techniques are
used to build the model of a centrally clamped disk. A finite
element mesh and the tenth eigenmode of a centrally
clamped disk are shown in Fig. 1(a). The mesh in the state of
equilibrium is gray and deflected according to the eigen-
mode, which is black. It is assumed that an ideal mirror film
covers the surface of the disk and a semisilvered mirror is
used in order to assure that the moiré grating and the photo-
graphic plate would not overlap each other.

It is assumed that the vibration energy of the analyzed
disk is concentrated in just one mode (the tenth mode). The
double exposure reflection moiré image [Fig. 1(b)] corre-
sponds to a special stroboscopic analysis technique over a
harmonically oscillating disk when the images of the disk in
the state of equilibrium and in the state of maximum deflec-
tion are overlapped. The time-average reflection moiré image
[Fig. 1(c)] is constructed for a harmonically oscillating disk;
calculations are performed over one period of the oscilla-
tions. A produced digital image demonstrates a well- defined
pattern of fringes, which can be effectively applied for the
reconstruction of dynamical deflections [21].

In order to investigate the applicability of time-average
moiré techniques for chaotic oscillations, we consider a non-
linear periodically driven damped pendulum, which is a
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FIG. 1. Applicability of moiré techniques for determination of
chaotic oscillations: (a) FEM (finite element method) model of the
centrally clamped disk: light gray lines—disk in the state of equi-
librium; dark lines—disk deflected according to the tenth eigen-
form; (b) double exposure reflection moiré image of the disk; (c)
time-average reflection moiré for harmonic oscillations; (d) time-
average reflection moiré for chaotic oscillations.

paradigm in the study of nonlinear dynamics. A dimension-
less time evolution equation of such a pendulum reads [13]
&6 in 6 bd0+F (wt) (1)
— =-—sin -b— cos(wt),
dar* dt
where b is the damping coefficient, F is the external forcing
amplitude, and w is the frequency. The driven damped pen-
dulum with w=23, b=1.0, and F=2.048 yields chaotic be-
havior following a period-doubling sequence of bifurcations
[Fig. 2]. Phase trajectories in the insets of Fig. 3 are plotted

in frames (6; 6) at the following values of b: (a) b=1.04, (b)
b=1.025, (c) b=1.01, (d) b=1.0055, (¢) b=1.003, and (f) b
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FIG. 2. Bifurcation diagram for the driven damped nonlinear
pendulum with parameter values w=2/3, F'=2.048, with respect to
the variation of the damping coefficient b. The insets show phase
space diagrams with orbits corresponding to specific values of the
parameters.
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FIG. 3. Disappearance of fringes caused by chaotic oscillations
at u(x)=kx: (a) Iy(x)—one-dimensional system in the state of equi-
librium; (b) I,(x)—deformed state; (c) I,(x)—double exposure of
Iy(x) and I,(x); (d) I,(x)—time-averaged fringes produced by har-
monic oscillations; (e) I4(x)—no time-averaged fringes are formed
when oscillations are chaotic (at A=0.5; k=0.05; 0=0.15).

=1.0002. Parameter b is varied following the rule b;=1.05
—%ln(l M); i=1,...,1001, which helps to expand
the cascade of period-doubling bifurcations.

The time-average reflection moiré image for chaotic os-
cillations [Fig. 1(d)] is constructed under the assumption that
the modal deflection of the disk varies according to the am-
plitude of the time process of a driven nonlinear pendulum at
b=1.002 [variant (f) in Fig. 2]. A long exposure time is used
to construct Fig. 1(d); disk deflections at 500 discrete time
moments of the evolution of € defined by Eq. (1) are evalu-
ated, which corresponds to 20 periods of the external pertur-
bation. This is a large computational problem keeping in
mind that finite element techniques are used to reconstruct
individual pixel gray scale color intensities at appropriate
discrete time moments, and time-averaging techniques are
applied afterwards to construct the time-averaged image
[11].

No definite pattern of fringes is present in the time-
average moiré image constructed for chaotic oscillations
[Fig. 1(d)], though the original moiré grating is clear in the
regions where the magnitude of dynamic deflections from
the state of equilibrium is infinitesimal. As mentioned earlier,
the results presented in Fig. 1(d) are constructed under the
assumption that the vibration energy is concentrated in the
tenth mode. If the vibration energy would travel from one
mode to another (what is a rather common situation in non-
linear systems [22,23]) the digital image would be blurred in
the whole area of the disk (except the zone around the fixed
internal radius) and no modal shapes could be reconstructed
from time-averaged images. In order to investigate the physi-
cal reasons causing fringe patterns getting blurred, we con-
centrate on the analysis of one-dimensional moiré systems.

III. ONE-DIMENSIONAL SYSTEMS

Moiré grating on the surface of a one-dimensional struc-
ture in the state of equilibrium can be defined as a harmonic
variation of gray scale color in the range between 0 (repre-
senting black color) and 1 (representing white color) defined
by (Ref. [11])
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Io(x) = cos2<§x), (2)

where [ is the gray scale color intensity in the state of equi-
librium, x is the longitudinal coordinate, and \ is the pitch of
the grating. The gray scale color intensity is a continuous
function and its linewidth is 50% of the pitch.

The gray scale color intensity of the one-dimensional
structure in a deformed state /; can be described as

h@ﬁwm<§h—Mﬂ0, (3)

where u(x) is the displacement from the state of equilibrium.

Superposition of the grating in the state of equilibrium
and in the deformed state produces a pattern of double ex-
posure moiré fringes [11] given by

149 = S{1o(0) + 1,09

= l + lcos[%’-(l - %)X]COS(%M(X)) (4)

The centers of the generated fringes are located at such val-
ues of x, where the branches of the envelope function of the
beatings %_%COS[;\—TM(X)] intersect. The relationship among
time-averaged fringes of order n, the pitch of the grating, and
the displacement can be derived from the condition 7,(x)
=0.5, giving

u(x)z)x(n—%). (5)

When time-averaging techniques are applied for the analysis
of a harmonically oscillating elastic one-dimensional struc-
ture, the carrier fringes are contrast modulated and the inten-
sity of the time-average geometric moiré image I, is de-
scribed as [12]

T
I(x) = lim %f cosz<%[x— u(x)sin(wt — <p)]>dt

T—oo 0

= % + %cos(%x)J(](szu(x)), (6)

where T is the time of exposure, w and ¢ are the angular
frequency and the phase of harmonic oscillations around the
state of equilibrium, J,, is the zero order Bessel function of
the first kind, and u(x) now defines the amplitude of dynamic
displacement. The centers of the time-average fringes are
located at such values of x where the branches of the enve-
lope function %i%]o[zfu(x)] intersect, giving

A
u(x) = ;Trn, (7)

where r,, is the nth root of J,. It should be noted that neither
the frequency nor the phase can be reconstructed from the
pattern of time-averaged fringes.
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If the oscillation of the analyzed one-dimensional system
is not harmonic, the intensity of the time-averaged gray scale
intensity is

T
1,(x) = lim — J cosz<;\—7[x —ux) 0(t)])dt, (8)

T—}OCT 0

where 6(7) is a function determining the variation of the dis-
placements u(x) in time. If 6(r) is a Gaussian normal ergodic
process, it can be approximated by a discrete scalar series of
normally distributed numbers with zero mean and o vari-
ance

6;~N(0,0%), i=12,.... )
Initial moments of such random variables are

EF1'=0, k=1,2,3,...,

EPF=1X3X -+ X (2k-1)0*=(2k-1) 1 0,
k=1,2,3,.... (10)
Then it is possible to use the following approximations:
1 (7
lim—J cos[au(x)6(t)]dt
T;;ooT 0

m

= lim 12 cos[au(x)6,]

m—o M

i LS s (E D Tt g

m—e T =1 =0

=§emmmw.§gﬁ

k=0 (2k)! r}g;m m
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_y E D a7 ”(%’f")] (2k—1) 11 6>
k=0 :
_gowwwmd”_”owﬂwmd%
et (2k) 1! = 2k
_g(_l)k[l 2]k_ [ l 2]
=2 2[au(x)cr] =exp —Z[au(x)cr] .
(11)
and
1 T
lim; f sin[au(x) 6(1)]dt
==t Jo
= lim 12 sin[au(x) 6;]
m—e M =y
L1 E G (D aux) 61!
‘Jﬁi‘i@% (2k+1)!
+ k 2k+1 m 2k+1
=E(_1) [au(x)] i (6) _0. (12)
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FIG. 4. Convergence of I4(x) to 0.5 at different values of o at
u(x)=kx, A\=0.5, k=0.05: (a) =0.09; (b) 0=0.18; (¢) 0=0.27.

where a is a constant. This leads to the following result:

1 1 (2a\. 1(" (2=
Iox) ==+ —cos| —x|lim— | cos| —u(x)6(r) |dt
272 O\ N meT )y A

1 (27 1 (" (2=
— —sin| —x |lim= | sin| —u(x)6(z) |dt
2 A T A

T—o 0

2
=%+%COS<2TWX>GXP|:— %(%M(X)U) } (13)

Finally, the envelope function of the contrast modulated car-
rier fringes takes the following form:

11 1(2m 2
Eyx)= 5 + 2exp[ 2( N u(x)o-) } (14)
Equation (14) shows an interesting feature. Time-averaged
gray scale color intensity converges exponentially to the
value of 0.5 at increasing dynamic displacements. Moreover,
no time-averaged fringes are formed at all. The higher is the
variance, the faster is the convergence. These effects are il-
lustrated in Figs. 3 and 4.

IV. RELATIONSHIP BETWEEN THE LARGEST
LYAPUNOV EXPONENT AND TIME-AVERAGED GRAY
SCALE INTENSITY

Lyapunov exponents provide a quantitative measure of
the degree of chaoticity for a trajectory in the theory of both
Hamiltonian and dissipative dynamical systems. Therefore
there exists a definite interest to observe possible relation-
ships among the largest Lyapunov exponent of the time func-
tion 6(¢) and the gray scale color intensity in time-averaged
moiré images.

We focus on the same nonlinear periodically driven
damped pendulum used to illustrate the blurred pattern of
fringes formed by bending oscillations of the disk (Eq. (1)).
Local Lyapunov coefficients are calculated at specified val-
ues of the damping coefficient b. The Jacobian of Eq. (1) is

0 1 0
J=|-cos 0 —b - wF sin(wr)
0 0 0

Then, the calculation of the maximum, X\, and the minimum,
\,, local Lyapunov exponents [17] is straightforward.
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FIG. 5. The figure shows the variation of the Lyapunov expo-
nents of the driven damped nonlinear pendulum as the damping
coefficient b increases; w=2/3, F=2.048. (a) Maximum Lyapunov
exponent. (b) Minimum Lyapunov exponent.

=2 \/bz 9 (15)
=—— - — —COS 0.
) 4

Sufficiently long time evolutions of @ (after the transients
seize down) are used in Eq. (15) to calculate averaged ap-
proximations of local Lyapunov exponents, which are shown
in Fig. 5.

Table I shows Lyapunov exponents calculated at different
values of b, which were used to visualize phase trajectories
in Fig. 2. Now the one-dimensional Moiré system is ana-
lyzed again. It is assumed that the time function 6(¢) in Eq.
(8) is the time evolution of @ defined by Eq. (1). Naturally,
only the steady state time evolution of 6 is considered with-
out the starting transients. Long time processes are used in
order to eliminate the effect of the mismatch between the
starting and finishing phases. Moreover, as the variation of b
alters the geometrical shape of the attractor, the time process
is linearly rescaled so that its mean is equal to O and its
variance is equal to 1.

Time-averaged gray scale color intensities are presented
in Fig. 6. It can be clearly seen that the range of time-
averaged gray scale color intensities is located around 0.5 at
higher magnitudes of maximum Lyapunov exponent. The
higher the maximum Lyapunov exponent is, the faster the
time-averaged image is blurred. The carrier fringes are still
of course visible in the region where u(x) is small.

It is clear that the dynamical variable of the nonlinear
driven pendulum [Eq. (1)] does not have a Gaussian ergodic
distribution when the dynamics is chaotic. Nevertheless, the
effect of the disappearance of fringes observed when the cha-
otic dynamics is described by the dynamic variable of the
pendulum is similar to the effect when the dynamic variable
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TABLE I. Local averaged Lyapunov exponents of the driven damped nonlinear pendulum; w=2/3; F

=2.048.

No. )\1 }\2 )\l + )\2 b

(a) 0.03382465351905 —-1.07382465351910 —1.04000000000005 1.0400
(b) 0.06747440395449 —-1.09247440395691 -1.02500000000242 1.0250
(c) 0.08923170163203 —-1.09923170163331 —1.01000000000128 1.0100
(d) 0.09132576753700 —-1.09682576753777 —-1.00550000000077 1.0055
(e) 0.09259723521378 —-1.09559723521619 —-1.00300000000241 1.0030
(f) 0.09269473920576 —1.09289473920214 —-1.00020000000362 1.0002

is approximated by a Gaussian ergodic distribution. There-
fore, it would be interesting to know if similar effects caus-
ing the fringes to disappear can be observed when the oscil-
lations are, in general, not periodic (being quasiperiodic,
chaotic, or stochastic with whatever distribution function).

The effect of the disappearance of fringes at nonharmonic
oscillations can be explained by the following consider-
ations. Harmonic oscillations produce a well-defined pattern
of time-averaged fringes. In fact, it is enough to average over
one full period of harmonic oscillations to produce this pat-
tern. We assume that the amplitude of harmonic oscillations
has changed to another discrete value after the first period of
the oscillations. The frequency of the oscillations is not im-
portant as time averaging eliminates all information about
the frequency [Eq. (6)]. Then, time averaging over the sec-
ond full period of harmonic oscillations would produce a
different pattern of fringes, which generally is not repetitive
to the first pattern of fringes. Then, after the second period,
the amplitude is changed again. If we continue such a pro-
cess for a long time, time averaging would not produce time-
average fringes and the image would get blurred at higher
dynamic displacements.

If the dynamic variable is described by a stochastic distri-
bution, the effect of image blurring is even faster compared
with quasiperiodic or chaotic oscillations. Time-averaged
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FIG. 6. Disappearance of fringes caused by chaotic oscillations:
(0) time-averaged fringes produced by harmonic oscillations at
=sin(r), A;=0: (a) time-averaged gray scale intensities I4(x) at \
=0.25, u=kx, k=0.05, w=2/3, F=2.048, b=1.04, \,=0.0338; (b)
b=1.025, \;=0.0675; (c) b=1.01, A;=0.0892; (d) b=1.0055, \,
=0.0913; (e) b=1.003, A;=0.0925; and (f) b=1.0002, \;=0.0926.

color intensity converges to 0.5 at higher dynamic displace-
ments (Gaussian distribution), while some undeveloped
fringes can still be seen in Fig. 6 at lower values of \;. We
have also analyzed stochastic oscillations with even distribu-
tion in a fixed interval and the results are similar to a Gauss-
ian distribution—time-averaged intensity converges to 0.5
without any (even undeveloped) fringes.

Another important question is whether the malfunction of
an optical setup can be distinguished from the optical effects
caused by chaotic oscillations. And in the case that chaotic
oscillations can be identified, what useful information one
can obtain by looking at the time-averaged image.

Defocus, geometrical or physical defects of optical or me-
chanical elements, camera shake, and misalignment of opti-
cal components are main sources of problems associated
with the malfunction of optical measurement systems.
Though such defects usually cause uniform blurs throughout
the image area, there exists a probability that only some part
of the image could be blurred (caused, for example, by a
stain on a lens). The optical system can be calibrated before
the measurement, but even if some defects would occur dur-
ing the measurement process, novel computational imaging
techniques [24] could be exploited to enhance the view. Thus
stationary images blurred by the optical system can be more
or less successfully deblurred. But it is impossible to use
computational image reconstruction techniques to enhance
the fringes blurred by chaotic oscillations—the fringes sim-
ply do not form then. If one still would have doubts if the
image blur is caused by chaotic oscillations or optical mal-
functions, one should register a stationary image (for ex-
ample, the image of the moiré grating used in time-averaging
experiments). Possible blurs caused by the optical system
should clarify the dissociation then.

Thus one can be sure that the analyzed system was per-
forming nonharmonic oscillations if moiré grating can be
clearly visible at least in some parts of the time- averaged
image (usually around fixed boundaries) and the pattern of
fringes (and also the grating) is blurred in other parts of the
image. Moreover, it is possible to reconstruct the modal
eigenshape of the structural oscillations even if these oscil-
lations are chaotic—if only the energy of oscillation is con-
centrated in one mode. Then moiré grating is visible not only
around fixed boundaries, but also in the stationary regions
defined by the eigenshape (though the time-averaged image
is blurred in other regions). Finally, the decay rate of the
sharpness of time-averaged moiré images can be used as an
estimate of the largest Lyapunov exponent of chaotic oscil-
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lations, especially when the same system is investigated at
different forcing or other conditions.

V. CONCLUDING REMARKS

Time-average moiré constitutes a powerful experimental
technique. Nevertheless, the solution of the inverse problem
of reconstruction of the field of dynamic displacements (or
strains) from patterns of time-averaged fringes in many cases
requires skills and experience. Therefore, it is important to
distinguish “wrong” measurement results caused by a mal-
function of the optical system and physical reasons produc-
ing specific optical effects and caused by chaotic responses
of nonlinear structures even under periodic forcing.

The analysis presented here of a vibrating disk performing
chaotic oscillations and an appropriate one-dimensional sys-
tem, provides insight into the physical reasons causing the
pattern of time-averaged moiré fringes to disappear. An in-
terpretation of the blurred time-averaged images is dis-
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cussed. It is explained how to distinguish possible malfunc-
tions of the optical system from effects caused by chaotic
and nonperiodic oscillations. Moreover, it is shown what
useful information about the eigenshape of oscillations one
can extract from time-averaged moiré images if chaotic os-
cillations can be identified.

The effect of the disappearance of time-averaged fringes
is demonstrated for reflection moiré. But the same effect
would take place for time-average geometric moiré or time-
average shadow moiré, since the physical relationships dem-
onstrated for a one-dimensional system are valid for the
above-mentioned variants of the moiré technique also.
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